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What is a Poisoning Attack?

“Data poisoning is an attack on machine learning models wherein
the attacker adds (or modifies) examples to the training set to
manipulate the behavior of the model at test time.”

There are a few different models for poisoning, which depend on:
I The goal of the attacker

I To increase the loss of the model on just a single data point
(Targeted)

I or the whole test set? (non-Targeted)

I How the adversary is allowed to change the training set
I How many data points/what fraction of the test set do they

control?
I How can the data points be modified?
I What information does the attacker have access to when

making poisons?



Learning under p-Tampering Attacks [Mahloujifar et al.
2017]

The PAC-learning setting with poisoning:

A learning problem P = (X ,Y,D,H, Loss) is (ε, δ)-PAC learnable
under poisoning attacks from A = ∪DAD if for every D ∈ D,
A ∈ AD , and n ∈ N

Pr
S←Dn,Ŝ←A(S),h←L(Ŝ)

[RiskD(h) ≤ ε(n)] ≥ 1− δ(n)



p-Tampering and p-Resetting attacks

The class of p-Tampering attacks consists of attacks where:

I There is at most p probability of each data point being
changed.

I The attacker is online - it only sees past examples when
crafting a poison example.

A p-Resetting attack is a more restricted attack, where

I When the attacker chooses to modify a data point, it simply
redraws from the ground truth distribution.



The Results

Let f : Supp(S)→ [0, 1] be the function the attacker is trying to
increase (Risk, targeted loss, probability of risk ≥ ε, etc.)

Let µ = E[f (S)] and ν = Var[f (S)].

Then there are p-tampering and p-resetting attacks Atam and Ares

such that

EŜ←Atam(S)
[f (Ŝ)] ≥ µ+

p · ν
1 + p · µ− p

− ξ

EŜ←Ares(S)
[f (Ŝ)] ≥ µ+

p · ν
1 + p · µ

− ξ

These attacks run in poly(|D| · n/ξ) time with oracle access to D.



Constructions - p-Tampering

Let f̂ [d≤i ] = Expected value of f given first i points, with the rest
random from D.

If we are allowed to change data point i , we will sample potential
poisons from D:

I With potential poison di let the rejection probability be

r [d≤i ] =
1− f̂ [d≤i ]

3− p − (1− p)f̂ [d≤i−1]

I Sample di then return it with probability 1− r [d≤i ]. Repeat
until a di is returned.

Can be made poly-time by cutting the sampling process short.



Proof Sketch

Write the probability of a sample arising in the poisoned set in
terms of the f̂ (d≤i )s

Pr[D̂i = di |d≤i−1]

Pr[D = di ]
=

2− 2 · (1− f̂ [d≤i ])

2− 2 · (1− f̂ [d≤i−1])

Evaluate the probability of a poisoned sample z

Pr[Ŝ = z ] =
2− p + f (z)

2− p + µ
Pr[S = z ]

Then evaluate the expectation of f (Ŝ)

EŜ←Atam(S)
[f (Ŝ)] ≥ µ+

p · ν
1 + p · µ− p



Moving on ...



Poison Frogs! Targeted Clean-Label Poisoning Attacks on
Neural Networks [Shafahi et al.]

I “Targeted” - Only trying to influence a single point t.

I “Clean Label” - Poisoned data will be undetectable to
humans.

The technique used in this paper is “Feature-Collision”
Let f (x) be the mapping of x to the penultimate layer (before
softmax).

We will attempt to make f (x) ≈ f (t) for some x in the desired
class.



The Algorithm

Choose a base instance x0 = b to start from
Do 100 steps of gradient descent on

||f (x)− f (t)||22 + β||x − b||22

The first term makes the “Feature Collision” happen
The second term ensures the poison still looks like the base image.

The issue: f will be different after the training with a new poison.
How do we deal with this?



Solution 1 - Transfer Learning

We declare that f will not be trained, only the final layer will be
trained.

This works 100% of the time on ImageNet



Solution 2 - Watermarking (Cheating)

Instead of taking base images from the target class, we will do a
mixture of 70% true target-class image, 30% target image, and use
this instead as our base.

Need a lot more poison for this: 50/1000 examples vs 1/1000.
Works on CIFAR


